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Abstract 
Stacking faults (SFs) and antiphase boundaries (APBs) 
in an n-dimensional ordered alloy with arbitrary 
primitive cell are analysed from the crystallogeome- 
trical standpoint. The general definition of a SF is given 
based on the concept of the boundary displacement 
lattice. The method of enumeration of all possible SFs 
of a given orientation is proposed. Finally, the energy of 
an unrelaxed SF is written in terms of the pair-potential 
functions. The proposed method may be implied as an 
efficient way of energy estimation and structural 
analysis of SFs. 

1. Introduction 
The ordered alloys and intermetallics show plastic 
behaviour that differs significantly from that of pure 
metals (Stoloff, 1971; Yamaguchi et al., 1981). From an 
industrial standpoint, the most important anomaly is 
the increase in yield stress with increasing temperature, 
first noted for Ni3A1 by Westbrook (1957), and then 
observed for many ordered alloys. Much effort has been 
directed toward finding explanations for this anomaly 
(Yamaguchi et al., 1981; Hirsch, 1992). Transmission 
electron microscopy (for example, Veyssiere & Noebe, 
1992) and in situ observations (e.g. Molenat & Caillard, 
1991) of superdislocations gave some information that 
has been used to improve the current models describing 
the anomaly (e.g. Paidar et al., 1992). It is believed that 
this yield stress temperature anomaly is attributable to 
the specific structure of the superdislocations. They are 
dissociated into two or more superpartials connected by 
an APB or an intrinsic SF or a complex SF consisting of 
an APB and an intrinsic SF (Yamaguchi et al., 1981; 
Trinckauf & Nembach, 1992). Such a structure of 
dislocations leads to their relatively low mobility in 
some slip planes and some directions. The magnitude 
and orientation dependence of the energy of planar 
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defects, listed above, strongly affect the properties of 
the superdislocations. For this reason, the plastic 
deformation models that have been developed to 
explain the anomalous flow behaviour require good 
estimations of the energies of planar defects of different 
orientations. 

The first analytical expression of the APB energy in 
terms of the pair potentials was derived by Flinn (1960). 
In that expression, the change in the number and type 
of the pair interatomic bonds was taken into account 
only for the first or second coordination shell. Then the 
analogous expressions usually for two or three coordi- 
nation shells were derived by many authors (e.g. 
Pandey & Krishna, 1975, 1976; Yamaguchi et al., 1981). 
Such kinds of expressions, in spite of their simplicity, 
were successfully used in the development of the 
theories of plastic deformation in ordered alloys. Later, 
experimental investigations (Douin et aL, 1986) showed 
that APBs and SFs in orientations with rather high 
Miller indices are also important. For such defects, the 
pair bonds in the larger number of coordination shells 
must be taken into account (Starostenkov & Kirienko, 
1994). The derivation of such formulae requires the 
assistance of a computer and is impossible without 
generalization of the calculation procedure. 

The expressions of the energies of defects mentioned 
above do not take into account the atomic relaxation 
near the defect. In essence, the energy of the defect is 
judged from the difference in the number and type of 
pair interatomic bonds in perfect and defect crystals. 
That is why we call this approach a crystallogeometrical 
one. The approach sometimes cannot give a reliable 
estimation of the energy of a planar defect but, for the 
spectrum of defects that differ, for example, by their 
orientation, this model often gives quite good estima- 
tions of relative energies (Starostenkov & Kirienko, 
1994). 

The APB is the so-called coherent planar defect, 
which does not destroy the lattice of the alloy but only 
changes a specific order in the arrangement of the 
atoms of different types in the lattice points. Other 
types of planar defects such as a SF, a twin boundary or 
a special grain boundary give the examples of partly 
coherent defects. They destroy the lattice of a crystal 
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but a sublattice of the lattice is preserved.  It would 
appear  reasonable  that the accuracy of the crystallo- 
geometrical  approach increases with the degree of 
coherence of the defect. 

For coherent  or partly coherent  planar  defects, the 
different lattice models are useful concepts for the 
description of the geometrical  relationship between two 
adjacent parts of a crystal. For grain boundaries  with 
relatively small E and for some other  planar  defects, the 
0-lattice, the coincidence site lattice and the displace- 
ment  shift lattice (Bollmann, 1967, 1970; Chadwick & 
Smith, 1976) play an important  role. For the description 
of all possible structure defects in grain boundaries,  
the gra in-boundary displacement ( G B D )  lattice was 
proposed by Orlov et al. (1975). 

In the present  paper,  the crystallogeometrical  
approach derived earlier for some other  planar  and 
one-dimensional  defects in superlattices (Starostenkov 
et al., 1993a, 1994; Dmitr iev et al., 1995) was expanded 
for SFs. The simplest case for analysis is the case of a 
coherent  defect. Here  the idea of reducing the analysis 
of a noncoherent  or a partly coherent  defect to 
analysis of a coherent  one (Bollmann, 1967, 1970) was 
employed.  This reduction can be per formed if a lattice 
that contains all the nodes of the defected crystal is 
known. 

The ( n -  1)-dimensional defect in an n-dimensional  
crystal was considered. This gives a common approach 
that can be easily applied to both cases of practical 
importance,  namely to the planar  defects in a real three- 
dimensional crystal and to the linear defects in a two- 
dimensional  model  of a real crystal. 

The remainder  of the paper  is organized as follows. 
The basic definitions of an n-dimensional  lattice 
(Conway & Sloane, 1993) and superlattice are recalled 
in §2. Then the solution of some auxiliary crystal- 
lographic problems is presented in §3. The definition of 
a SE enumerat ion  of SFs with given orientat ion and the 
derivation of the SF energy expression are presented in 
~4. Finally, §5 contains an example of SF analysis in the 
superlattice L10. 

Let us define a matrix V, rows of which are the 
coordinates of the vectors v, in an or thonormal  basis % 
j = 1 . . . . .  n. Then (1) may be written as 

x = f V ,  (2) 

where f is an arbi t rary vector with components  f~. The 
matrix V is called a genera tor  matrix for the lattice A q. 
The genera tor  vectors v, determine a primitive cell of 
the lattice with volume [ d e t ( w r ) ]  1/~. For the case 
n -  q, the volume is equal to the absolute value of 
de tV .  In further  calculations, vectors v, will be 
numbered  in a way such that det V > 0. 

For q >_ 2, there exist infinite possible ways of 
choosing the basis and the primitive cell for the lattice 
A q. Two bases u, and v, generate  the congruent  lattices 
if and only if 

U = VP,  (3) 

where U, V are the genera tor  matrices of bases u,, vi, 
respectively, and P is a unimodular  matrix (all elements 
are integers and d e t P  : 4-1). The volume of the 
fundamenta l  region does not depend on the basis. 

Addit ionally to the lattice A q, let us consider its 
translation A q + p originated from the translation of all 
points of A q along the vector p ~ E ". In the case when 
the translation vector p ¢( A q, the created object is not a 
lattice but is called a packing. 

Let the vectors v~ generate  the lattice A" and the 
vectors w~ -- K~v~ generate  the lattice f2 n, where K, are 
positive integers. Obviously, the volumes of primitive 
cells of these lattices are related by the expression 
det W -- M det V, where W is the genera tor  matrix of 

n 
lattice f2 ~ and M -- I-Ii=l K,. All points of the lattice A ~ 
may be represented as the union of points of M pack- 
ings: 

M 

A" = U (f2" q- gin), (4) 
m = l  

where vectors gm with respect to the basis w i have the 
form 

gm = (gl lK1 . . . . .  g . I K . ) ,  0 <_~ gi <--- K , -  1, (5) 

2. Geometry  of  a lattice and a superlaliice 

One of the convenient  ways of describing crystal 
geometry  in n-dimensional  Euclidean space E n is the 
lattice A q, where q ~ {0, 1 . . . . .  n}. A q is a set of vectors 
such as 

q 

x -- ~ .f/v i, (1) 
i=l 

where f/ are integers and v i are a linearly independent  
set of vectors. The lattice A q is uniquely determined by 
the vectors v~, which are called a basis or genera tor  
vectors of A q. 

and they belong to the primitive cell of f2 n. 
A superlattice tP n can be defined on the lattice A 3 by 

assigning some type of atoms Sm to each packing: 

M 

ggn = U (~'~n -I- gm)Sm" (6) 
m=l 

If instead of the basis w i of the lattice f2" a new one is 
chosen, then the new fundamenta l  region will contain 
exactly one lattice point from each packing ~"  + gin. 

The translational cell of the superlattice tp- of a 
minimum volume will be called a primitive cell of the 
superlattice. 
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3. So lu t ion  o f  auxil iary tasks 

3.1. Separation o f  an n-dimensional superlattice into 
(n-1)-dimensional monoatomic packings 

Let us represent  the superlattice q :  given by (6) as a 
union of (n - 1)-dimensional monoatomic  packings of 
given orientat ion.  The or ientat ion of ( n -  1)-dimen- 
sional packings will be defined by the hyperplane with 
Miller indices 

(h 1 . . .  hn) (7) 

with respect to the basis w~ of the lattice f2 n. 
Let us choose for the lattice f2" the new basis u~ with 

the vectors u 1 . . . . .  un_ 1 parallel to the hyperplane (7). 
Hereinafter ,  the hyperplane  will be called the plane. 
The set of vectors x = (x 1 . . . . .  xn) parallel to the plane 
(7) satisfies the linear equat ion 

hlX 1 q- . . .  + hnx n = 0. (8) 

The general integer solution of (8) can be expressed as 
follows: 

X T ~-~ = G  , 

0tn lY 

(9) 

where 0/1 . . . . .  O~n_ 1 are any integers, G is an n x (n - 1) 
matrix of rank n - 1 with appropria te  integer elements. 
The method  of finding the integer solutions to the l inear 
system with integer coefficients was described, for 
example, by Shapiro (1979). 

The components  of vectors u 1 . . . . .  un_l of the 
required basis u i can be defined with respect to the basis 
wi as the corresponding columns of matrix G. The last 
vector u n can be found from the condit ion 

det U = det W, (10) 

where U is the new generator  matrix of g2 n. 
The representa t ion of qjn as a union of ( n -  1)- 

dimensional  monatomic  packings is given by 

M oo 

kI/n = U U (~"~n-1 .31_ k u  n _.~ g*m)Sra, ( 1 1 )  
m = l  k=--(x~ 

where lattice fin-1 is generated by the vectors 
u 1 . . . . .  u,,_ 1 and hence has or ientat ion (h 1 . . .  hn). The 
components  of vectors g~ with respect to the basis u~ 
can be calculated as g n U ,  1 (modulo 1), where the rows 
of matrix U,  are the components  of vectors H i with 
respect to the basis w r 

3.2. A boundary displacement lattice 

To describe the special grain boundaries  in metals, 
the GBD lattice was proposed by Orlov et al. (1975). 
The GBD lattice may be built for any given lattice and 
given plane whose or ientat ion determines the orienta- 

tion of the planar  defect. The points of an n-dimen- 
sional GBD lattice are the intersection points of the 
n - 1  sets of parallel planes (no two of sets have 
parallel planes) passing through the points of a given 
lattice and perpendicular  to the given plane, with the set 
of parallel planes passing through the points of a given 
lattice and parallel to the given plane. The GBD lattice 
may be useful not only for the grain-boundary problem, 
for example, it may be used to obtain the general 
definition of a SE For this reason, in the present paper, 
the GBD lattice will be called a boundary  displacement 
lattice (BDL). 

Let us find the BDL for given lattice A n and given 
plane (h 1 . . .  hn). The BDL will be denoted  
A~DL(A n, ( h i . . . h n ) )  or A~3DL. The orientat ion of the 
plane ( h i . . .  hn) is given with respect to the basis v i of 
the lattice A". 

The construction of the BDL with any given orien- 
tat ion of the plane ( h l . . . h n )  is possible only if the 
generator  matrix V of lattice A n can be represented in 
the form V = pV', where p is real and the components  
of matrix V' are rat ional  numbers. 

The construction of the BDL requires the following 
steps. 

(i) The new basis u i of the lattice A n should be 
chosen in such a manner  that  vectors u 1 . . . . .  Un_ 1 are 
parallel to the plane (h 1 . . .  hn) as was described in §3.1. 

(ii) The or thogonal  project ion of the vector u n on the 
plane ( h l . . . h n )  should be found. The components  of 
this projection with respect to the basis ui can be 
written in the form 

( C l / d  I . . . . .  C n _ l / d n _  1 , 0) ,  (12) 

where ci/d i are the irreducible fractions. 
(iii) The generator  vectors of the desired BDL are 

t I = ( l / ] d l ] ) U  1 . . . . .  tn_ 1 = ( 1 / I d . _ l l ) u . _  1, t .  - -  u . .  

(13) 

One can see that the lattice A" is a sublattice of 
A~3DL(An, (hl . . .hn)).  

4. Analys i s  o f  s tacking faults  

4.1. Definition o f  a stacking fault 

In the literature, many definitions of SFs can be 
found (e.g. Hirth & Lothe, 1992). Unfortunately,  the 
descriptions they provide are not  general enough to be 
used for all types of structures. A general definition of a 
SF with or ientat ion (h 1 . . .  h , )  in the superlattice ~",  not  
contradictory to the others, may be given as follows. 

Let us consider two coincident in terpenetra t ing 
copies of the superlattice ~"  based on the lattice A n 
with the basis v r Let us find A~DL(A n, ( h a . . .  h,,)) and 
translate one copy of the superlattice with respect to 
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another along the vector^g E A~D L. The shifted super- 
lattice is symbolized by ~n. The crystal with the SF is 
obtained by contact between qJ" and tp,,, the plane 
boundary between ~" and qjn has orientation (h I . . .  h ,)  
and passes through the origin of the unshifted super- 
lattice. 

Notice that the APB is a particular case of the above 
definition when g ~ A n. This definition itself is a 
particular case of the grain-boundary SF definition, 
given by Orlov et al. (1975). In some cases, a planar 
defect with the translation vector g ~ A~D L may be of 
interest. In this case, instead of the lattice A73DL a lattice 
with smaller fundamental region that contains the 
wanted vector g has to be considered. 

4.2. Enumeration o f  stacking faults 

In pure metals, the number of SFs with orientations 
with low Miller indices is relatively small. In ordered 
alloys, this considerably increases owing to the presence 
of atoms of different types. Let us describe all the SFs 
of orientation (h l . . . h , , )  with different energy in the 
superlattice qJ". 

This problem has been solved for APBs (Indenbom 
& Loginov, 1987; Dmitriev et al., 1995). According to 
the definition given in ~4.1, the adjacent domains of a 
crystal containing a SF are relatively shifted by the 
vector g E A73DL. This means that nodes of both qJ" and 
~'~ belong to A~3DL. Let us assume that the points of the 
A n that are not occupied by the atoms of either ~'~ or ^ BDL 
qJ" contain the atoms of type O. As a result, the SF 
becomes a coherent-type defect because it does not 
destroy the A73DL and in this case the theory developed 
for the APBs can be applied. 

The number of energetically different APBs of any 
given orientation in superlattice ~"  cannot exceed 
L - 1 ,  where L is the number of atoms inside the 
primitive cell of superlattice ~"  (Dmitriev et al., 1995). 
In the considered case, the number L is equal to the 
number of points of A73DL inside the primitive cell of 
superlattice ~n. 

It is well known that the shift APB may not be 
formed in all orientations. The orientations in super- 
lattice tp,, where the shift APBs can be formed were 
derived by Starostenkov et al. (1993b). For those 
orientations, a SF is called a complex SF, otherwise it is 
called an intrinsic SF (Yamaguchi et al., 1981). 

4.3. Energy o f  a stacking fault in the pair-potential 
approximation 

The energy of a SF in the superlattice qJ" will be 
calculated under the assumption that interatomic 
interactions may be described by the pair interatomic 
potentials. 

Let the position of two atoms of types A and B be 
defined by radius vectors r A and r B, respectively. Let 
us assume that the pair interatomic potentials 
qgas(Irm -- rBI) are given. By the energy of interaction of 
packings, we imply the work required to move them 
away by an infinite distance. If either or both A and B 
atoms are atoms of type O, then q3aB( l l r  m - -  rn[ ) = 0. 

We have a given superlattice qJ" defined on the 
lattice A" as in (6) and given plane ( h l . . . h n )  with 
respect to the basis v; or (Klh I . . .  K,h , )  with respect to 
the basis w i. Derivation of the energy of the SF is as 
follows. 

The first step is to find the generator vectors t~ of 
A73DL(A", (h l . . . h , , ) )  (see §3.2). Then the superlattice 
qJ" should be redefined on the A~D L by adding some 
packings of type O. The number of atoms inside the 
primitive cell of superlattice qJ", including atoms of type 
O, is 

L = det W/de t  T, (14) 

where W and T are the generator matrices of lattices ~"  
and AT~DL, respectively. Then, (6) may be rewritten as 

L 
q'" = U ( a "  + g,)s,. (15) 

/=1 

Equat ion  (15) differs from (6) only by the presence of 
L - M packings of type O that do not affect the energy 
of the crystal. 

The following step is to separate the crystal (15) into 
( n -  1)-dimensional monoatomic packings of given 
orientation (Klhl...gnhn). For this purpose, let us 
choose a new basis z /of  the lattice f2 n instead of w, such 
that vectors z 1 . . . . .  z,,_ x are parallel to the given plane 
( K l h i . . .  Knhn) and z,, is chosen from the condition 
det Z = det W, where Z is the generator matrix of the 
new basis. The desired representation is given by 

kI/n --  U U (~'~n-1 + k z  n 71- g;)s/ ,  (16) 
/=1 k=-oo 

where lattice ~'~n-1 is generated by vectors z 1 . . . . .  Zn_ 1. 
The components of vectors g7 with respect to the basis 
z i can be calculated as g tZ.  1 (modulo 1), where the 
rows of matrix Z.  are the components of vectors z i with 
respect to the basis w i. 

According to the definition of SF given in §4.1, let us 
consider two coincident interpenetrating copies of 
crystal qJ" given by (16), one of which will be marked 
qJ". Then let us translate the crystal qJ" along a vector 
gT 6 A~DL" AS a result, the sorts of packings S~ will be 
changed to D t ones. The plane (Klhl . . .  K,,hn) divides 
the crystals on the half-crystals: 

• " = q J "  UqJ+ and ~ " = ~ " _ _ U ~ + ,  (17) 
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where 
L - 1  

'¢,t = U U ( f r ' - I  + kz. + gt)s, 
1=1 k = - c x )  

L cx~ 

~IJ+ --- U U (  an-1 + kzn -Jr gt)st 
.'=1 k--O (18) 

L - 1  

,i,t = U U (a"-' + kz. + gt)o, 
1=1 k = - - ~  

L cx~ 
^ n  , q/+ -- U U(  ~'~n-x + k z .  -t--gl)Dt. 

1=1 k-----O 

^ n  The defect crystal is qJ"_ U qJ+. 
The energy of a SF can be calculated as the differ- 

ence 
^ 

Esv = E ( ~  ¢> qJ+)-  E(qJ~ ¢> qJ+), (19) 

where the minuend is the energy of interaction of half- 
crystals in the defect crystals and the subtrahend is that 
for the ideal crystal. 

The energy of a SF (Klhl . . .K, ,h, , )  per unit area 
formed by translation of the crystal qJ" with respect to 
the crystal qJ" along the vector g]' is 

EsF(g D = ( l / H )  ~ ~Os,,D,2 (IqZl) - ( l / H )  ~ q)s,,s,2 (IqZl), 

(20) 

where 
L cx~ - 1  cx~ 

~--~ = E Y] Z E ,  (21) 
l 1 , / 2 :1  kl ..... kn_l------O0 kn=-(x~ kn+l=O 

q = gt* - g,* + (k 1 . . . . .  k , _  x , k,, - k , + ] ) ,  (22)  

H = [det(Z,,ZT)] 1/z, Z .  is the genera tor  matrix of the 
( n - 1 ) - d i m e n s i o n a l  lattice with genera tor  vectors 
Z 1 , • . . , Z n -  1 • 

To make  (20) convenient  for practical calculations, it 
is necessary to find the ranges of the integer-valued 
indexes k i sufficient for taking into account all 

close-packed planes in the superlattice L10. The 
superlattice Llo is based on the f.c.c, lattice and 
successive (001) planes are al ternately occupied by 
atoms of one species. We label the f.c.c, lattice with the 
lattice pa ramete r  a and the superlattice L10 as A 3 and 
qj3, respectively. The genera tor  matrix V of the lattice 
A 3 can be chosen as 

2 0 0 
a 1 0 , 

0 1 
(24) 

hence the generator  vectors of A 3 with respect 
to the or thonormal  basis e, are v I = (a, 0, 0), 
v 2 = (a/2, a/2, 0), v 3 = (a/2, O, a/2) (see Fig. 1). 

The superlattice L10 can be defined as in §2 by 
choosing K 1 -- 1, g 2 = 1, g 3 = 2. Then M = 2 and (6) 
becomes 

2 

. 3  = U ( 93 + gm)s., (25) 
m = l  

where the lattice ~-'~3 has genera tor  vectors w 1 = v 1, 
W 2 = V2,  W 3 = 2v3, translation vectors of packings are 
gl = 0, g 2 - - v 3  and the two sorts of packings are 
$1 = A ,  S 2 = B .  

The close-packed planes with respect to the basis v i 
are (111). Let us turn now to the derivation of the 
boundary  displacement lattice A 3 a 'A3 (111)). First, B D L \  , 

the new basis u i of the lattice A 3 with vectors u 1, u 2 
parallel to the plane (111) should be found. In doing 
this, we are guided by the algorithm described in §3.1. 
Equat ion (8) takes the form 

X1 .qL X2 .q_ X3 = 0 (26) 

bonds of length not greater  than R, where R is the cut- 
off radius of the pair potentials. It is enough to consider 
- P j  < kj < ej,  j = 1 . . . . .  n -  1; 
0 < kn+ 1 < P,,; where 

Pi = LR[det(ZJZ~)ll/2 /det Z] + 1, 

Zj is the genera tor  matrix of an ( n -  1)-dimensional 
lattice genera ted  by vectors z x . . . . .  zj_a,zj+ 1 . . . . .  z,,; 
/xJ is the integer part  of x. 

- P , ,  < k,, _< - 1 ;  A ~ 

j = l  . . . . .  n; 

(23) x I ~ .  ~,' .A 

; _*%',I-'" #l.'f • / /  / 
; . v , ~ . '  , , _ - t ' , ' '  ~ / 

e3 ' , ~ / - / , - a ,  W2=V2, I / /  

5. E x a m p l e  e I w 1=v1 

As an illustration, let us derive the expression for the Fig. 1. Superlattice Llo or qj3. Vectors vi generate the f.c.c, lattice or 
energies of all possible SFs with orientat ion parallel to lattice A 3. Vectors wi define the primitive cell of the superlattice. 
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and its general solution is 

I X 1 )  [ 1 0 1 (  ) x 2 = 0 1 % , (27) 
X 3 --1 --1 C¢2 

where ct 1, ct 2 are any integers. Consequently,  

u ,  = (1 ,  0,  - 1 ) ,  U 2 = (0 ,  1 , - 1 ) .  ( 2 8 )  

Condi t ion det U = det V, where U, V are two generator  
matrices of the lattice A 3, gives 

u 3 = (1, 0, 0). (29) 

Note that vectors u, are given by equations (28) and 
(29) with respect to the basis v i. 

The following step is to find the u components  of the 
or thogonal  project ion of the vector u 3 on the plane 
(26). One obtains: 

(34 - 2 0) (30) - - 5 ,  

and thus the basis of A 3 (A 3 (111)) can be written as BDL I, , 

1 . ( 3 1 )  11 = 1 Ul ' 12 = 3 u2 ' t3 .__ u3 

Recall that  the superlatt ice Llo (25) was defined on 
the lattice A 3. Lattice A 3 is a sublattice of the lattice 
A3DL SO one can define the superlatt ice L10 on the 
lattice A3DL by assigning to the packings that  are not  
occupied atoms of type O. The e coordinates  of vectors 
w~ and t, are obta ined from v coordinates  by multiplying 
by matrix V. As a result, the generator  matrices of ~'2 3 

and A3DL are 

2 0 0 1 0 --1 

a 1 0 , T = a  0 1 - 1  , (32) W = ~  

0 2  " 6 0 0 

respectively, then L = det W / d e t  T -- 18. Equat ion  (25) 
can be written as 

18 
~I/3 = U(~"23 Jr-gl)St, (33) 

1=1 

where the lattice f23 has generator  vectors %, transla- 
tion vectors of packings with respect to the basis w i are 

gl = ( 0 , 0 , 0 ) ,  g2 = ( 0 , 0 , 1 ) ,  g3 = ( 0 , 1 , 1 ) ,  

g7 = (2 0, 1), g 8 = ( 1 , 3 ' 2  0), g9 __(2 , 1 , 0), 

1 = ( 0 , 2  2 gl0 -'- (0, g, 5 ), gll = ( l ,  0, 5), g12 .~, g),  
1 2 g13 = ( ½ , 3 , 2 ) ,  g14 = ( ~ , 0 , 2 ) ,  g15 =(15,2,½),  

2 g]6 = ( 2 , 1 , 1 ) ,  g,7 = ( 2 , 2 , 1 ) ,  g,8 = (~ ,~ ,5 ) .  

(34) 

and the sorts of packings are S 1 = A ,  S 2 = B ,  
S 3 - S i s  = O (see Fig. 2). Informat ion  about  the sorts 

of packings can be written as follows: 

A B O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .  (35) 

The primitive cell of superlattice (33) contains 
L -- 18 atoms. It means that the number  of SFs (111) 
with different energy is no more than L - 1  = 17 
because the translat ion along the vector gl = 0 does not  
produce a defect. 

Now we turn to calculation of the energies of all 
possible 17 SFs (111). 

Instead of the basis w i, the new one z i will be chosen 
in such a manner  that z 1 and z 2 are parallel to the close- 
packed planes. The close-packed planes in the basis % 
are (K 1 K 22K3) = (112). The equat ion 

X 1 "3 I- X 2 + 2X 3 = 0 (36) 

has the general solution 

E -1 21<t x 2 -- 1 0 Ctl , 
x 3 0 1 ct2 

(37) 

where a 1, o~ 2 are any integers and therefore 

z, = ( - 1 , 1 , 0 ) ,  z 2 = ( - 2 , 0 , 1 ) .  (38) 

Condi t ion d e t Z - -  de tW,  where Z, W are two 
generator  matrices of the lattice ~3, gives 

z 3 = ( - 1 ,  0, 1). (39) 

Vectors z i are given by (38) and (39) with respect to the 
basis w r Vectors z i with respect to the basis ei give the 
rows of the generator  matrix 

a[llO 1 
Z =  X - 2  0 2 .  

0 0 2 
(40) 

1 

el Wl ~ A 

Fig. 2. The primitive cell of superlattice ~l/3 with additional packings of 
sort O, which locate at the points of AaBDL(A 3, (111)). 
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Rows of the matrix 

Z, = - 2  0 
- 1  0 

(41) 

are the w coordinates of vectors z~. The z coordinates of 
vectors (34) can be obtained from the w coordinates as 
follows [g~* = g / Z .  1 (modulo 1)]: 

* * 1 1 , 0 ) ,  gl = (o, o, o), g 2 = ( o , l , o ) ,  g ; = ( ~ ,  
1 0), * = (2 1 , 0 ) ,  g~ = ( 1 , 1  0), g~ = (0, .~, g5 ~, 

g; = (o, l ,  o), g ~ = ( ~ , o , o ) ,  g ; = ( ~ , o , o ) ,  
g;o = ( 1 * 2 0), .~,-~,0), g;1 = ( 0 , ~ , 0 ) ,  g12--- - (~ ,~,  

* ~ o), * = ( o , ~ , o ) ,  * = ( ~  ½ o), g13 = ( 1 , 3 '  g14 g15 ' , 

g~'6 ---- (1 1 0), g~7 --  (2 , ,  .~, ~, o), gh  = ( ~ , ~ , o ) .  

(42) 

The superlattice (33) can be presented as a union of 
two-dimensional packings with orientation (111): 

18 
q13 = U U ( a 2  nt- kz3 nt- gDs,. (43) 

1=1 k = - ~  

A close-packed plane is shown in Fig. 3. The volume of 
the new primitive cell of superlattice qj3 is shown 
together with the nodes of type O. 

Translation of the superlattice (43) along the vector 
g~' changes the typess of packing as follows: 

g~ : A B O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ,  

g~ " B A O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

g~ : O O A O O O O O O B O 0 0 0 0 0 0 0  

g~ : O 0 0 A O O O O O O B O 0 0 0 0 0 0  

g~ : O 0 0 0 A O O O O O O B O 0 0 0 0 0  

g~ : O 0 0 0 0 A O O O O O O B O 0 0 0 0  

g~ " O O O O O O A O O O O O O B O 0 0 0 ,  

g~ " O 0 0 0 0 0 0 A O O O O O O B O 0 0 .  

g~ " O 0 0 0 0 0 0 0 A O O O O O O B O 0 ,  

g~o" O O B O O O O O O A O 0 0 0 0 0 0 0 ,  

g "11 " O 0 0 B O O O O O O A  O 0 0 0 0 0 0 .  

g~2" O O O O B O O O O O O A O 0 0 0 0 0 ,  

g~3 " O 0 0 0 0 B O O O O O O A O 0 0 0 0 ,  

g~4" O O O O O O B O O O O O O A O 0 0 0  

g ~ 5 " O O O O O O O B O O O O O O A O 0 0  

g~6" O O O O O O O O B O O O O O O A O 0  

g~7 " O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 A B  

g~8 " O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 B A .  

(44) 

The energy of^a SF per unit area, formed by translation 
of the crystal ~P" with respect to the crystal qJ" along the 
vector g~* is 

ESF(N~) = ( l /H)  ~ ~OS,lD,2(lqZ[) -- ( l /H)  y~ ~Ost, s,2 (IqZl), 

(45) 

where 

18 P1 P2 -1 P3 
E = E E E ~ y~,  (46) 

11,/2=1 kl=-P 1 k2=-P 2 k3=--P 3 k4=0 

q = gl: --  gl: At- ( k l ,  k2, k3 - k4),  (47)  

a[2021 all = Z 2 --  Zl  2 0 0 2 '  2 0 a[-11 
Z 3 = 2  --2 0 ' 

1 0 ]  
0 2 ' 

(48) 

H -- [det(Z3Z3r)] 1/2 = (31/2/2)a 2. (49) 

The cut-off radius of the potentials is R - - a  × 21/2, 
then, according to (23), the limits of the sums in (46) are 

e l  = [2 x 21/2J + 1 = 3, P2 = L2J + 1 = 3, 

P3 --  L61/2j nt- 1 = 3. (50) 

Sorts of packings St,, Sl2 in (45) are given by (35), sorts 
Dr2 are given by one of the set (44) for corresponding 
translation vector g]'. 

Equation (45), in view of (44) and (46)-(50), gives, 
for example 

Fig. 3. A close-packed plane of superlattice ko 3 with additional 
packings of sort O. 
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Esr:(g~) = (2/31/2a2)[-og(rT) + 3o9(r13) - 4o9(r19 ) 

-I- 6o9(r24)], (51) 

EsF(g~7 ) = (2/31/2a2)[2A(r17) -- 4o9(r19 ) -- 6A(r19 ) 

+ 8o9(r22 ) + 12A(r22 ) -- 6A(r24)], (52) 

Esv(g~s ) ---- (2/31/2a2)[--o9(r7) + 3o9(r13) + 2o9(r17) 

+ 2A(r17) -- 6o9(r19 ) -- 6A(r19 ) + 4o9(r22) 

+ 12A(r22) -- 6A(r2.)] , (53) 

where og(r) -- --qgAA (r) + 2qgAB(r ) -- qgBBtr~, 
A(r) -- qgmA(r ) + qgBB(r), r 7 = (a/6)(18) / , 
r13 -- (a/6)(36) 1/2, r17 -- (a/6)(48) 1/2, r19 = (a/6)(54) 1/2, 
r22 -- (a/6)(66) 1/2, r24 = (a/6)(72) 1/2. Translation vectors 
g~z, g~7 and g~8 are shown in Fig. 3. 

Actually, the defect obtained by translation along the 
vector g~ 6 A 3 is not a SF but it is an APB. The energy 
of this defect is expressed in terms of pa ramete r  o9, 
which is to say that this defect does not destroy the 
lattice A 3. 

The other  two translations produce the defects that 
are truly SFs. One might expect that energy Esr(g~8 ) is 
larger than energy Esr(gi'7) because the latter defect 
does not change the types of atoms at the coordination 
shells with smallest radii, namely, r 7 and r13. 

6. Summary 

The definition of gra in-boundary SFs given for pure 
metals by Orlov et al. (1975) was adopted to define a 
SF in an arbi trary ordered alloy. The problems of 
enumerat ion  of all possible SFs of given orientation as 
well as the derivation of the analytical expression for SF 
energy in terms of pair potentials were solved. 

One of the authors (SVD) wishes to thank the 
Ministry of Education,  Science, Sports and Culture of 
Japan for their financial support.  
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